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We develop a, general theory,,for variance function estimation, focusing on estimation
of the structural parameters and including most methods in common use in our development.
The general qualitative conclusions are these. First, most variance function estimation
procedures can be looked upon as regressions with "responses"-being transformations of
absolute residuals from a preliminary fit or sample standar deviations from replicates
at a design point. Our concIin is thaS the former is typically more efficient, but
not uniformly so. Secondly, for variance function estimates based on transformations of
absolute residuals, we show that efficiency is a monotone function of the efficiency
of the fit from which the residuals are formed, at least for symmetric errors. Our con-
clusion is that one should iterate so that residuals are based on generalized least
squares. Finally, robustness issues are of even more importance here than in estimation
of a regression function for the mean. The loss of efficiency of the standard method
away from the normal distribution is much more rapid than in the regression problem.

As an example of the type of model and estimation methods we consider, for observation
- covariance pairs (Y.,x.) one may model the variance as proportional to a power of

the mean response, e.g.,
eE(Y.) = f(xi.,3); var(Y.) = a f~xi3) , f(xiB) > 0,

where f(x.,6) is the possibly nonlinear mean function and 0 is the structural parameter
of interekt. "Regression methods" for estimation of 0 and a based on residuals
ri = Yi f(xi,B) for some regression fit B. involve minimizing a sum of squares where

some function T of the Iril plays the role of the "responses" and an appropriate function
2of the variance plays the role of the "regression function." For example, if T(x) = x

2
the responses would be ri, and the form of the regression function would be suggested

2 02 20by the approximate fact E (r.) f(xi,6,)2 . One could weight the sum of squares
1 2

appropriately by considering the approximate variance of r.. For the case of replication

at each xi, some methods suggest replacing the ri in the function T by sample standard

deviations at each x.. Other functions T, such as T(x) = x or log x have also been
proposed.
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Heteroscedastic regression models are used in fields including

economics, engineering, and the biological and physical sciences. Often.

the heteroscedasticity is modeled as a function of the covariates or the

regression and other structural parameters. Standard asymptotic theory

implies that how one estimates the variance function, in particular the

structural parameters, has no effect on the first order properties of the

regression parameter estimates; however, there is evidence both in practice

and higher order theory to suggest that how one estimates the variance

function does matter. Further, in some settings, estimation of the variance

function is of independent interest or plays an important role in estimation

of other quantities. In this paper, we study variance function estimation

in a unified way, focusing on common methods proposed in the statistical and

other literature, in order to make both general observations and compare ,

different estimation schemes. We show there are significant differences in

both efficiency and robustness for many commnon methods.
0%

We develop a general theory for variance function estimation, focusing

on estimation of the structural parameters and including most methods in

conmmon use in our development. The general qualitative conclusions are

these. First, most variance function estimation procedures can be looked

*upon as regressions with "responses" being transformations of absolute

residuals from a preliminary fit or sample standard deviations from

replicates at a design point. Our conclusion is that the former is

typically more efficient, but not uniformly so. Secondly, for variance 1
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function estimates based on transformations of absolute residuals, we show

that efficiency is a monotone function of the efficiency of the fit from

which the residuals are formed, at least for symmetric errors. Our

conclusion is that one should iterate so that residuals are based on

generalized least squares. Finally, robustness issues are of even more

importance here than in estimation of a regression function for the mean.

The loss of efficiency of the standard method away from the normal

distribution is much more rapid than in the regression problem.

As as an example of the type of model and estimation methods we

consider, for observation - covariate pairs (Yi~xi). one may model the

variance as proportional to a power of the mean response, e.g.,

E(Yi) = f(xi.,) ; var(Yi) = a f(xi,.) , f(xi.13) > O,

where f(xi. P) is the possibly nonlinear mean function and 8 is the

structural parameter of interest. "Regression methods" for estimation of 0

and a based on residuals ri = Y - f (xI. P.) for some regression fit 1,

involve minimizing a sum of squares where some function T of the 1r1  plays

the role of the "responses" and an appropriate function of the variance

plays the role of the "regression function." For example, if T(x) = x2  theII
2 2, 20suggested by the approximate fact E (r f(xI,) One could weight

the sum of squares appropriately by considering the approximate variance of
2
ri. For the case of replication at each xi, some methods suggest replacing

the ri in the function T by sample standard deviations at each xi. Other

functions T, such as T(x) = x or log x have also been proposed.

0'



1.1

1. Ifr~r3locff

Consider a heteroscedastic regression model for observable data Y:

(1.1) EY= = f(xi.'); Var (Yd a 2 g 2(zI.,').

Here, {x1 ) are the design vectors. 13(p x 1) is the regression parameter, f is

the mean response function, and the variance function g expresses the

heteroscedasticity, where {zi) are known vectors, possibly the {xi), a is an

unknown scale parameter, and O(r x 1) is an unknown parameter. For example,

the variance may be modeled as proportional to a power of the mean:

(1.2) g(zi,,e) = f(xiP)e. f(xip) > O.

One might also model the variance as quadratic in the predictors, i.e.,

a g(zi.4.6) = 1 + 0 xt + 82

or by an expanded power of the mean model, I.e.,

(1.3) a. g ,( ,O) =01 + 02 f(xiO) ,

.

03%(1.3) 2 21 +2 iJ

Box and Meyer (1986) use

g(zi,,.) = exp(zi0). .

An important feature of (1.1) is that no assumption about the distribution of

N- .-,
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the {Yi} has been made other than that of the form of the first two moments.

Models which may be regarded as special cases of (1.1) are used in diverse

fields, including radioimmunoassay, econometrics, pharmokinetic modeling,

enzyme kinetics and chemical kinetics among others. The usual emphasis is on

estimation of P with estimation of the variances as an adjunct.

The most common method for estimating P is generalized least squares, in

which one estimates g(zl..) by using an estimate of 0 and a preliminary

estimate of 13 and then performs weighted least squares; see, for example.

Carroll and Ruppert (1982a) and Box and Hill (1974). This might be iterated,

with the preliminary estimate replaced by the current estimate of 13, a new

estimate of 6 obtained and the process repeated. Standard asymptotic theory as

In Carroll and Ruppert (1982a) or Jobson and Fuller (1980) shows that as long

as the preliminary estimators for the parameters of the variance function are

consistent, all estimators of 13 obtained in this way will be asymptotically

equivalent to the weighted least squares estimator with known weights.

There is evidence that for finite samples, the better one's estimate of 6.

the better one's final estimate of 1. Williams (1975) states that "both

analytic and empirical studies... indicate that... the ordering of efficiency (of

estimates of 13)... in small samples is in accordance with the ordering by

efficiency (of estimates of 6)." Rothenberg (1984) shows via second order

calculations that if g does not depend on J3, when the data are normally

distributed the covariance matrix of the generalized least squares estimator of

is an increasing function of the covariance matrix of the estimator of 0.

Second order asymptotics provide only a weak justification for studying

the properties of variance function estimates. Instead, our thesis is that

estimation of the structural variance parameter 9 is of independent interest.

In many engineering applications, an important goal is to estimate the error

'made in predicting a new observation; this can be obtained from the variance

~. 'J.. i ',. -, e



3

function once a suita' le estimate of 9 Is available. In chemical and

biological assay problems, issues of prediction and calibration arise. In such

problems, the estimator of 6 plays a central role. As motivation for the study

of variance function estimation, in Section 2 we discuss the problems of

calibration and prediction in the case of heteroscedasticity. For a f ormal

Investigation of how the statistical properties of prediction intervals and

calibration constructs such as the minimal detectable concentration will be

highly dependent on how one estimates 0; see Carroll, Davidian and Smith

(1986). In off-line quality control, the emphasis is not only on the mean

response but also on its variability; Box and Meyer (1986) state that "one

distinctive feature of Japanese quality control improvement techniques is the

use of statistical experimental design to study the effect of a number of

factors on variance as well as the mean." The goal is to adjust the levels of

a set of experimental factors to bring the mean of the responses to some target

value while minimizing standard deviation; the problem involves simultaneous

consideration of both mean and variability, where the latter may be a function

of the mean, see Box (1986) and Box and Ramirez (1986). These authors advocate

methods based on data transformations to account for the heteroscedasticity in

separating the factors into those affecting dispersion but not location, those

affecting location but not dispersion, and those affecting neither. One

similarly might employ effective estimation of variance functions in this

application. We briefly discuss the relationship between variance function

estimation and one type of data transformation in Section 3.

It should be evident from this brief review that far from being only a

nuisance parameter, the structural variance parameter 9 can be an important

part of a statistical analysis. The above discussion suggests the need for a

unified investigation of estimation of variance functions, in particular,

estimation of the structural parameter 6. Previous work in the literature
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tends to treat various special cases of (1.1) as different models with their

own estimation methods. The intent of this paper is to study parametric

variance function estimation in a unified way. Nonparametric variance function

estimation has also been studied, see for example Carroll (1982): we will

confine our study to the parametric setting.

Parametric variance function estimation may be thought of as a type of

regression problem in which we try to understand variance as a function of

known or estimable quantities, and in which 0 plays the part of a "regression"

parameter. The major insight which allows for a unified study is that the

absolute residuals from the current fit to the mean or the sample standard

deviations from replicates are basic building blocks for analysis. At the

graphical level, this means that transformations of the absolute residuals and

sample standard deviations can be used to gain insight into the structure of

the variability and to suggest parametric models. For estimation, a major

contribution is to point out that most of the methods proposed in the

literature are (possibly weighted) regressions of transformations of the basic

building blocks on their expected values. Many exceptions to this are dealt

with in this article as well.

Our study yields these major qualitative conclusions. As stated here,

they apply strictly only to symmetric error distributions, but they are fairly

definitive, and one is unlikely to be too successful ignoring them in practice.

(I). Robustness plays a great role in the efficiency of variance function

estimation, probably even greater than in estimation of a mean function. For

example, if the variance does not depend on the mean response, the standard

method will be normal theory maximum likelihood as in Box & Meyer (1986). A

weighted analysis of absolute residuals yields an estimator only 12% less

efficient at the normal model which rapidly gains efficiency over maximum

likelihood for progressively heavier-tailed distributions. This slope of

0 II % %. dS
OW~~ ~ ~ ~ .. 0-W- - -. 0 - I. .' %-
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improvement is much larger than is typical in regression on means. For a

standard contaminated normal model for which the best robust estimators have

efficiency 125% with respect to least squares, the absolute residual estimator

of the variance function has efficiency 200Z.

(II). We obtain implications for fit to the means upon which the

residuals are based. It has been our experience that unweighted least squares

residuals yield unstable estimates of the variance function when the variances

depend on the mean. This is confirmed in our study, in the sense that the

asymptotic efficiency of the variance function estimators is an increasing

function of the efficiency of the current fit to the means. Thus, we suggest

the use of Iterative weighted fitting, so that the variance function estimate

is based on generalized least squares residuals. As far as we can tell, this' ,- N

part of our paper is one of the first formal justifications for iteration in a

generalized least squares context. "-

(III). It is standard in many applied fields to take m replicates at each

design point, where usually m 4. Rather than using (transformations of)

absolute residuals for estimating variance function parameters, one might use

the sample standard deviations. We develop an asymptotic theory from which we

obtain the efficiency of this substitution. The effect is typically, although

not always, a loss of efficiency, at least when there are m 4 replicates.

The clearest results occur when the variance does not depend on the mean.

Normal theory maximum likelihood is a weighted regression of squared residuals;

the corresponding method would be a weighted regression based on sample k
variances. Using the latter entails a loss of efficiency, no matter what the

underlying distribution. For normally distributed data, the efficiency is

(m-l)/m, thus being only 50% for duplicates. For other methods, using the

replicate standard deviations can be more efficient. This is particularly true

of a method due to Harvey (1976), which is based on the logarithm of absolute

Sj-. . - ., A. - . -P .- . , ..%., . . .. _ - A. . . %. . • . ,,
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residuals. A small absolute residual, which seems to always occur in practice.

can wreak havoc with this method. This is consistent with our influence

function calculations, so that we suggest some trimming of the smallest

absolute residuals before applying Harvey's method.

(IV). Our results indicate that the precision of estimates 0 is

approximately independent of ai. Also, in the power of the mean model (1.2).

the efficiency of a regression estimator improves as the relative range of

values of the mean response increases; efficiency depends on the spread of the

logarithms of means, not their actual values. This helps explain why in

assays, estimating variances is typically much harder than estimating means.

In Section 2 we discuss the prediction and calibration problems as a

motivating example of a situation in which variance function estimation is of

key importance. In Section 3 we describe a number of methods for estimation of

0. We do not discuss robust methods, see Giltinan, Carroll and Ruppert (1986).

In Section 4 we present an asymptotic theory for a general estimator of 0 whose

construction encompasses the methods of Section 3. Section 5 contains examples

of specific applications of our theory and a discussion of the implications of

our formulation. Sketches of proofs are presented in Appendix A.

2. AN EXAMPLE: ThM ROLE OF VARIANCE ESTIMATION IN PREDITOM N D

CALIBRATION PROBLEM

One example In which heterogeneity of variation occurs is in calibration

experiments in the physical and biological sciences, in which one fits a model

such as (1.1) to a sample {yi.xY. i =1 N The {xi) may be concentrations

of a substance and the {y,) counts or intensity levels which vary with

concentration. The interest lies In using the estimated regression to make

% % % % % % %
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inference about a pair (y ,x ) which is independent of the original data set.

One may wish to obtain point and interval predictors for y0 in the case x0 is

known (prediction) or estimate x in the case y0 only is known (calibration),

see Rosenblatt and Speigelman (1981). As a motivating example for considering

estimation of variance functions as an independent problem, we describe the

primary role of form and estimation of the variance function in construction of

prediction/calibration intervals in the case of heteroscedasticity.

Throughout this discussion assume xi = zi so that we may write the

variance function as g(x,f,9). and assume that the data are approximately

normally distributed. Given x , the standard point estimate of the response yo

is f(x 3), where 13 is some estimate for J3. For any consistent estimator of
0

1, under (1.1) the variance in the error made by the prediction is, for large

2 2%sample sizes, var{y - f(x o .) a2 g (x o.,.), so that the error in

prediction is determined mainly by the variance function a2 g2 (xO .,9) and not

the original data set itself. An approximate (1-a)lOO confidence interval for

N-p
Yis 1(x 0) all y in the interval f(x 0.1 t 1-/ a g(x,3) 0, here

tN-p is the (l-a/2) percentage point of the t distribution with (N-p) degrees1 -a/2

of freedom, and a and 0 are estimates. If the parameters are estimated by a

weighted analysis such as generalized least squares assuming (1.1). all

estimates are consistent and the prediction interval becomes

(2.1) I(xo) { all y in the interval f(xo.1) E tl* a g(x
0 o 1-a12 0

If one were to ignore the heterogeneity, the interval would be given by Iu(Xo)
N-p

all y In the interval f(x ) 1 a For an unweghted analysis,
0 1-a/2 ~} o nuwihe nlss

however, a would be estimated by the unweighted mean squared error a2 - a 2

N-1 g2(x., 2 g2 for large N. Thus, the unweighted prediction interval

satisfies

O

...............................................



Figure 1.

Approximate form of prediction intervals for a
linear mean response function based on

unweighted (ignoring heteroscedasticity) and
weighted (as in (1.1)) regression fits.
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Figure 2.

Approximate form of calibration confidence intervals
for a linear mean response function based on
unweighted (ignoring heteroscedasticity) and

weighted (as in (1.1)) regression fits.
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N-p
(2.2) zU(Xo) { ( all y in the interval f(xo,p) tl~a/ 2 ogN}.

Comparing (2.1) and (2.2), we see that where the variability is small, the

unweighted interval will be too long and hence pessimistic, and conversely

where the variance is large. Figure 1 illustrates a typical case of this

phenomenon for the simple situation of an approximately linear mean response

function where variability increases with mean response.

The situation is the same for calibration. For simplicity in discussing

calibration, assume f(xP) is strictly increasing or decreasing in x. Given

y o the usual estimate of x is that value satisfying yo = f(x,.J). The common

confidence interval for x is the set of all x values for which yo falls in the

prediction interval I(x); this interval is actually a (1-a)100 confidence

interval for the unknown x . Again, the effect of not weighting is intervals
0

which are too long for x where the variance is small and the opposite when the - P

variance is large. We are not familiar with any extensive investigation of

calibration confidence intervals for heteroscedastic models, although see

Watters, Carroll and Spiegelman (1987). Figure 2 represents an example of this

phenomenon in the situation of Figure I for the region of small variance.

The key point of this discussion is that when heterogeneity of variance is

present, how well one models and estimates the variances will have substantial

impact on prediction and calibration based on the estimated mean response,

since the form of the intervals depends on the form of the variance function.

Some theoretical work has been done verifying the implications of this

discussion; for an investigation of how the statistical properties of

estimators for calibration quantities depend on those of the estimator 6. see

Carroll. Davidian and Smith (1986) and Carroll (1987).

4.% %



3. ESTIMATION OF e

We now discuss the form and motivation for several estimators of 0 in

(1.1). In what follows, let A be a preliminary estimator for (. This could

be unweighted least squares or the current estimate in an iterative reweighted

least squares calculation. Let al = {Yi - f(xi'P))/{og(z.13,')) denote the

errors so that Ee =0 and E e = 1. and denote the residuals by r i =Yi -

f(xi.PM) .  We consider some methods requiring mi  2 replicates at each of M

design points; for simplicity, we consider only the case of equal replication

mi m and write in obvious fashion {Yij}, J =1. m. to denote the m

observations at x i where appropriate, so that N = Mm is the total number of

observations. In this case, let Yi. and si denote the sample mean and standard

deviation at x . For consistency of exposition, however, we denote the sum

over all observations as

instead of IN
i=1 j=l.

When we speak of replacing absolute residuals ({r i1} by sample deviations {s)%

in the case of replication. [ri or si appears m times in the sum.

3.1 Regression Methods

1P

Pseudo-likelihood. Given P. the pseudo-likelihood estimator maximizes

the normal log-likelihood e(j{ ,6a), where

(3.1) e(=.a) -N log a- I logg(zi .. )}

2 -12 2- (2a _iP {Yi-f(xi.'))2 / (zi'.00 ).

see Carroll and Ruppert (1982a). Here the term "pseudo-likelihood" is used as

0
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in Gong and Samaniego (1981). Generalizations of pseudo-likelihood for robust

estimation have been studied by Carroll and Ruppert (1982a) and Giltinan,

Carroll and Ruppert (1986).

Least saiuares on sauared residuals. Besides pseudo-likelihood, other

methods using squared residuals have been proposed. The motivation for these

methods is that the squared residuals have approximate expectation

a 2g2 (zi, (.), see Jobson and Fuller (1980) and Amemiya (1977). This suggests a

nonlinear regression problem in which the "responses" are (ri2 and the

"regression fu?-tion" is-a g (ziJ3 .O). The estimator-eSR minimizes in 8 and a

=l r_ 222

For normal data the squared residuals have approximate variance o4g4 (zi,3.e);

in the spirit of generalized least squares, this suggests the weighted

estimator which minimizes in 6 and a

(3.2) I- r a2g 2 (zi'PN6))/g 4 (zi 13 6M).

where 0. is a preliminary estimator for 0. eSR for example. Full iteration.

when it converges, would be equivalent to pseudo-likelihood.

Accounting for the effect of leverage. One objection to methods such as

pseudo-likelihood and least squares based on squared residuals is that no

compensation is made for the loss of degrees of freedom associated with

preliminary estimation of 1. For example, the effect of applying

pseudo-likelihood directly seems to be a bias depending on p/N. For settings

such as fractional factorials where p is large relative to N this bias could be

substantial.

Bayesian ideas have been used to account for loss of degrees of freedom; ii
0PI



see Harville (1977) and Patterson and Thompson (1974). When g does not depend

on 3. the restricted maximum likelihood approach of the latter authors suggests

* in our setting one estimate 0 from the mode of the marginal posterior density

for 6 assuming normal data and a prior for the parameters proportional to a

When g depends on P. one may extend the Bayesian arguments and use a linear

approximation as in Box and Hill (1974) and Beal and Sheiner (1986) to define a

restricted maximum likelihood estimator.
Let Q be the N x p matrix with ith row fP(xi.)t( ) where f (x")

= 8/3 (f(xi.P)}. and let H = Q(QtQ)-IQt be the "hat" matrix with diagonal

element hii= hii(P.); the values (hii} are the leverage values. It turns out

that the restricted maximum likelihood estimator is equivalent to an estimator

obtained by modifying pseudo-likelihood to account for the effect of leverage.

This characterization, while not unexpected, is new; we derive this estimator

and its equivalence to a modification of pseudo-likelihood in Appendix B.

The least squares approach using squared residuals can also be modified to

show the effect of leverage. Jobson and Fuller (1980) essentially note that

for nearly normally distributed data we have the approximations

2 22
Ea ri  a 2(1-hi.

2 4 2 4

where hil = hii(13w'Ow) and O.' is a preliminary estimator for 6. An")

asymptotically equivalent variation of this estimator in which one sets the

derivatives of (3.3) with respect to 2 and a equal to 0 and then replaces 6w by

2 a2 1_"" "- - 2-"2"

(33 N ( z-
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6 can be seen to be equivalent to pseudo-likelihood in which one replaces

standardized residuals by studentized residuals. While this estimator also

takes into account the effect of leverage, it is different from restricted

maximum likelihood.

Least squares on absolute residuals. Squared residuals are skewed and

long-tailed, which has lead many authors to propose using absolute residuals to

estimate 6; see Glejser (1969) and Theil (1971). Assume that

EJYi - f(xi.P)I = rg(zi. 3.O).

which is satisfied if the errors (aiI are independent and identically

distributed. Mimicking the least squares approach based on squared residuals,

one obtains the estimator 9 AR by minimizing in vj and 0

Y=1 (Iril - a(zif3*.6).

In analogy to (3.2). the weighted version is obtained by mimimizing

2 2 a

i=1 r - ?1(zi.j 3 .O)) /g (z.P*.O*).

where 0 is a preliminary estimator for 6. probably 0AR' As for least squares

estimation based on squared residuals, one presumably could modify this

approach to account for the effect of leverage.

Lowarithm method. The suggestion of Harvey (1976) is to exploit the fact

that the logarithm of the absolute residuals has approximate expectation log
Estimate by ordinary least squares regression of log Iril on

log {og(zi,%N.)), since if the errors are independent and identically

distributed, the regression should be approximately homoscedastic. If one of

,"."
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the residuals Is near zero the regression could be adversely affected by a

large "outlier," hence in practice one might wish to delete a few of the

smallest absolute residuals, perhaps trimming the smallest few percent.

3.2 Other methods

Besides squares and logarithms of absolute residuals, other

transformations could be used. For example, the square root and 2/3 root would

typically be more normally distributed than the absolute residuals themselves. '

Such transformations appear to be useful, although they have not been used much

to our knowledge. Our asymptotic theory applies to such transformations. 6

In a parametric model such as (1.1). joint maximum likelihood estimation

is possible, where we use the term maximum likelihood to mean normal theory

maximum likelihood. When the variance function does not depend on P., it can be

easily shown that maximum likelihood is asymptotically equivalent to weighted

least squares methods based on squared residuals. In the situation in which

the variance function depends on P3 this is not the case. In this setting, it

has been observed by Carroll and Ruppert (1982b) and McCullagh (1983) that

while maximum likelihood estimators enjoy asymptotic optimality when the model J,
It.

and distributional assumptions are correct, the maximum likelihood estimator of

1can suffer problems under departures from these assumptions. This suggests

that joint maximum likelihood estimation should not be applied blindly in

practice. The theory of the next section shows the asymptotic equivalence of

maximum likelihood with other methods in a simplifying special case. Based on

this theory, we tend to prefer weighted regression methods even when the data

are approximately normal for reasons of relative computational simplicity.

While we have chosen to describe the methods of Section 3.1 as "regression

methods," asymptotically equivalent versions of such methods may be derived by

N N N %0

%*
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considering maximum likelihood assuming some underlying distribution. For

example, the form of the weighted squared residuals method is that of normal

theory maximum likelihood with 13 known and G* replaced by 0

(pseudo-likelihood); the form of the weighted absolute residual method is that

of maximum likelihood assuming P known and 0. replaced by 0 under the double

exponential distribution. Thus, what we term a regression method may be viewed

as an approximation to maximum likelihood assuming a particular distribution.

We feel that the regression interpretation is a much more appealing and natural

motivation, since no particular distribution need be considered to obtain the

form of the estimators, only the mean-variance relationship.

Another Joint estimation method is the extended quasi-likelihood of Nelder

and Pregibon (1987) also described in McCullagh and Nelder (1983). This

estimator is based on assuming a class of distributions "nearly" containing

skewed distributions such as the Poisson and gamma. While it may be viewed as

iteration between estimation of 9 and a and generalized least squares for 1,

technically this scheme does not fit in the general framework of the next

section; an asymptotic theory has been developed elsewhere, see Davidian and

Carroll (1987). A related formulation is given by Efron (1986).

Methods requiring replicates at each design point have been proposed in

the assay literature. These methods do not depend on the postulated form of

the regression function; one reason that this may be advantageous is that in

many assays along with observed pairs (Yij xI) there will als( be pairs in

which only Yij is observed. A popular and widely used method is that of

Rodbard and Frazier (1975). If we assume

(3.4) g(zi.P.) = g(AV.ziO),

as in, for example, (1.2) or (1.3), the method is Identical to the logarithm

i~ ~~~~ ~~ % 
I

iI ./ /I lI 
I
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method previously discussed except that one replaces IrlJ by the sample

standard deviation sI and f£(xi,,) in the "regression" function by the sample

mean Y- As a motivation for this and the method of Harvey, consider that

under (1.2) 8 is simply the slope parameter for a simple linear regression.

As an alternative, under the assumption of independence and (3.4). the

modified maximum likelihood method of Raab (1981) estimates 6 by joint

maximization in the (M+r+l) parameters a2,04,. of the "modified" normal

likelihood

(3.5) U1 _l{a gg 2iziO)) exp[- l (y 2 {2a 2 2 t(.z i 6))]-Yz -

The modification serves to make the estimator of a unbiased. The idea here is

to improve upon the regression method of Rodbard by appealing to a maximum."'

likelihood approach which, despite a parameter space increasing as the number

of design points, is postulated to have reasonable properties. A related

method is that in which 0 and a are estimated by maximizing (3.5) with Pi

replaced by Yi- the motivation being computational ease and evidence that this

estimator may not be too different from that of Raab in practice, see Sadler

and Smith (1985). 'p

Table 1 contains a summary of some of the common methods for variance p

function estimation and their formulations.

4. AN ASY IUFrIC THEORY OF VARIANCE FHNCEI(T ESTIMATION

In this section we construct an asymptotic theory for a general class of

regression-type estimators for 6. Since our major interest lies in obtaining

general insights, we do not state technical assumptions or details. In what

.

w e

L%"A' 0-%% % . . . ..
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follows, in the case of replication N - 0 in such a way that m remains fixed.

The reader uninterested in this development may wish to skip to Section 5.

where conclusions and implications of the theory are presented.

4.1 Methods based on transformations of absolute residuals

Write d(13) = JYi - f(x.13)I. Let T be a smooth function and define Mi by

Mi(n,6,) = E [ T(di()} ]

where Tj is a scale parameter which is usually a function of a only. We

consider estimation of the more general parameter 77 instead of a itself for

ease of exposition, and since a is estimated jointly with 6 in regression

models, our theory focuses on expansions for 77 and 9 jointly. If 7,, 0. and

are any preliminary estimators for 71, 6. and 3. define 71 and 6 to be the

solutions of

(4.1) N1  IN2  (7., 'Td" ~ - / =0P* 0.I

where Vi(n7,0,6) is a smooth function and Hi is a smooth function which for the

estimators of Section 3 is the partial derivative of M with respect to (n.O).
i

In what follows, we suppress the arguments of the functions M i. Vi . etc. when

they are evaluated at the true values 17, 6, and P. Specific examples are

considered in the next section.

The class of estimators solving (4.1) includes directly or includes an

asymptotically equivalent version of the estimators of Section 3.1. For

methods which account for the effect of leverage. Mi. Vi and Hi will depend on

the hii. In this case we need the additional assumption that if h = max (hii).

then N11/2h converges to zero.

j. P
% %
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A A 1/2
Theorem 4.1. Let Ti,. 0 and 13, be N consistent for estimating I, 0 and 1.

Let T be the derivative of T and define

C I = Hi [T{di()} - Mi] / Vi;

B N-lil HHt/Vi
1,N i=1 ii -

B 2N:-- - 1I H/2N 1  (HifVi) 81[ {Mi(r.6.1)};,

B3 ,N =-N i=1 (Hif/i)f1 P(xi,13) E [T{di(P)}sign(ei)].

Then, under regularity conditions as N -* ,

1/ T = N 1/2P 2+0()

(4.2) B1N N ] 1ci + (B2 N+B3  N1 2(3-) + Op(l).

We may immediately make some general observations about the estimator 0

solving (4.1). Note that if the variance function does not depend on 1, then

M does not depend on J3 and hence B2 N 0 . For the estimators of Section 2.1.

f is an odd function. Thus, if the errors {ai) are symmetrically distributed,

E[ Hi{di(P)}sign(ai) ) = 0 and hence B3 N 0.

Corollary 4.1(a). Suppose that the variance function does not depend on 1 and

the errors are symmetrically distributed. Then the asymptotic distributions of

the regression estimators of Section 3.1 do not depend on the method used to

obtain P.. If both of these conditions do not hold simultaneously, then the

asymptotic distributions will depend in general on the method of estimating 1.

The implication is that in the situation for which the variance function

does not depend on 1 and the data are approximately symmetrically distributed,
,.'

for large sample sizes the preliminary estimator for 1 will play little role in

%~7 r~~.' 'V F~ 1r -, A F %
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determining the properties of 0. Note also from (4.2) that for weighted

methods, the effect of the preliminary estimator of 6 is asymptotically

negligible regardless of the underlying distributions.

The preliminary estimator 3* might be the unweighted least squares

estimator, a generalized least squares estimator or some robust estimator.

See, for example. Huber (1981) and Giltinan. Carroll and Ruppert (1986) for

examples of robust estimators for J3. For some vectors {VNi), these estimators

admit an asymptotic expansion of the form

(.)1/2 a 1/2P q (
(4.3) N- () = N- i=1 

4 (VN,i i.) + O p(1).

Here * is odd in the argument e. In case the variance function depends on 13.

B2, N A 0 in general; however, if the errors are symmetrically distributed and

P. has expansion of form (4.3), then the two terms on the right-hand side of

(4.2) are asymptotically independent. The following is then immediate.

Corollary 4.1(b). Suppose that the errors are symmetrically distributed and

that 13, has an asymptotic expansion of the form (4.3). Then for the estimators

of Section 3.1. the asymptotic covariance matrix of 0 is a monotone

nondecreasing function of the asymptotic covariance matrix of P*. a

By the Gauss-Markov theorem and the results of Jobson and Fuller (1980)

and Carroll and Ruppert (1982a). the implication of Corollary 4.1(b) is that

using unweighted least squares estimates of P3 will result in inefficient

estimates of 6. This phenomenon is exhibited in small samples in a Monte Carlo

study of Carroll, Davidian and Smith (1986). If one starts from the unweighted

least squares estimate, one ought to iterate the process of estimating 0 -- use

the current value to estimate 0 from (4.1), use these 13, and 0 to obtain an

%
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updated 1* by generalized least squares and repeat the process T - 1 more

times. It is clear that the asymptotic distribution of 0 will be the same for

T 2 with larger asymptotic covariance for 1 = 1. so in principle one ought to

iterate this process at least twice. See Carroll. Wu and Ruppert (1987) for

more on iterating generalized least squares.

4.2 Methods based on sample standard deviations

Assume replication, and as before let {si} be the sample standard

deviations at each x . which themselves have been proposed as estimators of the

variance in generalized least squares estimation of )3. This can be

disasterous, see Jacquez, Mather and Crawford (1968). When replication exists.

however, practitioners feel comfortable with the notion that the (si) may be -

used as a basis for estimating variances; thus, one might reasonably seek to

estimate 0 by replacing di(P,) by s, in (4.1).

The following result is almost imediate from the proof of Theorem 4.1 in

Appendix A.

Theorem 4.2. If di(13*) is replaced by si in (4.1). then under the conditions

of Theorem 4.1 the resulting estimator for 0 satisfies (4.2) with B 0 and

the redefinitions

(4.4a) C, = (Hi/Vi)(T(si) - Mi}:

(4.4b) Ni = E (T(si)) = Mi(n,-). o1 .e.

If the errors are symmetrically distributed, then from (4.2) and Theorem

4.2. whether one is better off using absolute residuals or sample standard

deviations in the methods of Section 3.1 depends only on the differences

" ,U' " - -""
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between the expected values and variances of T~di()} and T(si). In Section 5

we exhibit such comparisons explicitly and show that absolute residuals can be

preferred to sample standard deviations in situations of practical importance.

4.3 Methods not dependina on the regression function

We assume throughout this discussion that the variance function has form

(3.4) and replication is available. From Section 3.1 we see that the

"regression function" part of the estimating equations depends on f(xi.3 ). so

that in the general equation (4.1) Mi. Vi and Hi all depend on f(xi.,). In

some settings, one may not postulate a form for the p for estimating 6; the

method of Rodbard and Frazier (1975). for example, uses si in place of di(p3)

as in Section 4.2 and replaces f(xi.p3) by the sample mean Yi- We now

consider the effect of replacing predicted values by sample means for the

general class (4.1).

The presence of the sample means in the variance function in (4.1)

requires more complicated and restrictive assumptions than the usual large

sample asymptotics applied heretofore. The method of Rodbard and Frazier and

the general method (4.1) with sample means are functional nonlinear errors in

variables problems as studied by Wolter and Fuller (1982) and Stefanski and

Carroll (1985). Standard asymptotics for these problems correspond to letting

-1/2
a go to zero at rate N - . In Section 4.4 we discuss the practical

implications of a being small; for now, we state the following result.

Theorem 4.3.. Suppose that we replace f(xi.9,,) by Y1i in Mi , Vi and Hi in

(4.1) and adopt the assumptions of Theorems 4.1 and 4.2. Further, suppose that

as N -, a c -. 0 simultaneously and

(I) N 1/2- X. 0 X <'

S

.0
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(ii) Nlil C has a nontrivial asymptotic normal limit distribution;
i1 i

(iii) The ({i} are symmetric and i.i.d ;

(iv) (17i. - 11il / a2 has uniformly bounded k moments, some k > 2.

Then the results of Theorems 4.1 and 4.2 hold with B2 N = B3 N = O. 0

This result shows that under certain restrictive assumptions. one may

replace predicted values by sample means under replication; however, it is

important to realize that the assumption of small a is not generally valid and

hence the use of sample means may be disadvantageous in situations where these

asymptotics do not apply. Further, relaxation of assumption (iii) will result

in an asymptotic bias in the asymptotic distribution of the estimator not

present for estimators based on residuals regardless of the assumption of

symmetry; see Appendix A.

The estimator of Raab (1981) discussed in Section 3.2 is also a functional

nonlinear errors in variables estimator. complicated by a parameter space with

size of order N. Sadler and Smith (1985) have observed that the Raab estimator

is often indistinguishable from their estimator with pi replaced by Y* in

(3.5): such an estimator is contained in the general class (4.1). Davidian

(1986) has shown that under the asymptotics of Theorem 4.3 and additional

regularity conditions that the two estimators are asymptotically equivalent in

an important special case. We may thus consider the result of Theorem 4.3

relevant to this estimator.

4.4 Small a asymptotics

In Section 4.3 technical considerations forced us to pursue an asymptotic

theory in which a is small. It turns out that in some situations of practical

% .% % %., % %
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importance these asymptotics are relevant. In particular, in assay data we

have observed values for a which are quite small relative to the means. Such

asymptotics are used in the study of data transformations in regression. It is

thus worthwhile to consider the effect of small a on the results of Sections

4.1 and 4.2 and to comment on some other implications of letting a -, 0.

In the situation of Theorem 4.1. if the errors are symmetrically

distributed, then for the estimators of Section 3.1. if a -. 0 as N -# -, then

there is no effect for estimating the regression parameter 1. In the situation

of Theorem 4.2, the errors need not even be symmetrically distributed. The

major insight provided by these results is that in certain practical situations

in which a is small, the choice of 3 may not be too important even if the

variance function depends on 13.

Small a asymptotics may be used also to provide insight into the behavior

of other estimators for 6 which do not fit into the general framework of (4.1).

It can be shown that the extended quasi-likelihood estimator need not

necessarily be consistent for fixed a, but if one adopts the asymptotics of the

previous section, this estimator is asymptotically equivalent to regression

estimators based on squared residuals as long as the errors are symmetrically

distributed. Otherwise, an asymptotic bias results which may have implications

for inference for 6. For discussion see Davidian and Carroll (1987).

The small a assumption also provides an illustration of the relationship

between variance function estimation and data transformations. Let t(y.X) =

(y - 1)/X, and consider the model

(4.5) E{ t(Yi.X) } e £( f(xi.13).X ); var{ e(Y)X } = a:

such "transform both sides" models are proposed and motivated by Carroll and

Ruppert (1984). For a 0. E(Yi) f(xi,1) and var(Yi) a a f(xi.P1 )(l-5), so

, , . e .. , e - * * ..'.**.a.p .. -. . .e. - ,.o,.. . .-... . •. .. .
Mir%,~Si
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that in (1.2) we have 6 Z 1 - X. Thus, when the small a assumption is

relevant. (4.5) and (1.1). (1.2) represent approximately the same model.

5. APPLICATIONS AND FURTHER RESULTS

vp

In Section 4 we constructed an asymptotic theory for and stated some

general characteristics of regression-type estimators of 6. In this section we

use the theory to exhibit the specific forms for the various estimators of

Section 3 and compare and contrast their properties. In our investigation we

rely on the simplifying assumptions implied by the theory of Section 4.,-4n

particular the small a asymptotic approach in which a -# 0 as N -* 0.

Throughout. define v(I.3.) = log g(zI, P,). let v,(i.0) be the column vector

of partial derivatives of v with respect to 0. let f(13.8) be the covariance

matrix of vY(i.1,8). and let T(it.,O) = { 1, vO(.,.e))t. For simplicity.

assume that the errors (e} are independent and identically distributed with

kurtosis K; K = 0 for normality.

.I

5.1 Maximum likelihood. pseudo-likelihood, restricted maximum likelihood and

weighted squared residuals.

Writing n = log a, we have T(x) = x2 , Mi = exp(2rW) g ,2 ,(z .. ). Vi = M, Ht

= /i(77,0t)tand E [ T(d()) sign(e1 ) J = 2 E [ Y, - f(x1 '13)] = 0 so that

B M 0 regardless of the underlying distributions. If h -* 0 such that N/h
3.N

-. 0 for methods accounting for the effect of leverage, then all of these

methods admit an expansion of the form (4.2) with B - 0. The expansion wll
3.N -. Teepninwl

be different depending on whether is a generalized least squares estimator

for 13 or full maximum likelihood, since the maximum likeihood estimator has an

d-...%
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expansion quadratic in the errors while that of the generalized least squares

estimator is linear in the (a,}. see Carroll and Ruppert (1982b). The

implication is that regression methods based on iterated weighted squared

residuals and full maximum likelihood are different in general asymptotically.

Regardless of the underlying distributions, for fixed a. Davidian (1966) has

shown that the asymptotic covariance matrix of the former methods increases

without bound as a function of a while that of maximum likelihood remains

bounded for all a. Further, a simple comparison of the two covariances reveals

that under reasonable conditions maximum likelihood has smaller asymptotic

covariance as long as K 2. While these facts may suggest a preference for

full maximum likelihood even away from normality, the computational and model

robustness considerations mentioned earlier may make this preference tenuous.

Generalized least squares and maximum likelihood estimators for P3 both satisfy

-1/2
= 0 (aN- ), so that if a -# 0 or g does not depend on 13. then 6 is

asymptotically normally distributed with mean 0 and covariance matrix

(5.1) (2 + K) {4N 1.

As mentioned in Section 3, under the small a asymptotics of Theorem 3.3.

the extended quasi-likelihood estimator of 9 is asymptotically equivalent to

the estimators here with asymptotic covariance matrix (5.1). Thus, if g does

not depend on 13 or a -4 0, pseudo-likelihood, weighted squared residuals.

restricted maximum likelihood, maximum likelihood and, if a -# 0, extended

quasi-likelihood, are all asymptotically equivalent. In addition, all of these

estimators have influence functions which are linear in the squared errors,

indicating substantial nonrobustness.

We may also observe that these methods are preferable to unweighted

regression on squared residuals. Write (5.1) as

N N

,, " , , " e ' ." , " " " ' " '" *." " -% .
% % %



.- ,, U W UMl~ 1 MN I " , 1u U r MV WU M~w- -ur- V- Ir -V W

%
25 N.

'.

(5.2) (1/2 + x/4) (WV- 
1W)- -

4m
'I.

where V is the N x N diagonal matrix with elements Vi and W is the N x p matrix

with i'th row Ht For the unweighted estimator based on squared residuals,

i.

calculations similar to those above show that the asymptotic covariance matrix

when either g does not depend on P3 or a -# 0 is given by .'

(5.3) (1/2 + x/4) (WtW)-I (Wtvw)(Wtw)- 1 .

'I.

The comparison between (5.2) and (5.3) is simply that of the Gauss-Markov

theorem, so that (5.2) is no larger than (5.3).

5.2 Logarithms of absolute residuals and the effect of inliers

We do not consider deletion of the few smallest absolute residuals. Here

T(x) = log x so that T(x) = x- 1  Letting 1 = log a and assuming independent

and identically distributed errors we have K= 7 + v(i, .0) + E log 1i6. V-

1. and H = T(i.3.0). Under the assumption of symmetry of the errors, with g

not depending on 03 or a -+ 0. tedious algebra shows that 0 is asymptotically

normally distributed with mean 6 and covariance matrix

(k2 }
(5.4) var (log (1 ) (N E(19.0))

The influence function for this estimator is linear in the logarithm of the

absolute errors. This indicates nonrobustness more for inliers than for

outliers, which at the very least is an unusual phenomenon. If the errors are

not symmmetric then there will be an additional effect due to estimating / not

," " " ' '7 " ". % " -' "- '- "'.'" - ".""-" "-- --"-'. -- -- " ." , -. < " -- '.-.-..- .-' -'--'-"-.'---.- -'.',.-'-- -- --.-
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present for the methods of Section 5.1, even if g does not depend on 1.

5.3 Weighted Absolute Residuals

Assume that the errors are independent and identically distributed and let

exp(7) = oE161. Consider the weighted estimator. We have T(x) = x, T(x) = 1.

M = exp(ri) g(zi.0,6) and Vi = K2. Thus, if the errors are symmetrically

distributed and either g does not depend on 13 or a -+ 0. 0 is asymptotically

normally distributed with mean 0 and covariance matrix

(5.5) (61/( - 5)} IN f(1 .)) - 1 ,

where 5 = var jel. The influence function for this estimator is linear in the

absolute errors. By an argument similar to that at the end of Section 5.1, we

may conclude that when the effect of 13 is negligible one should use a weighted

estimator and iterate the method.

5.4 General transformations

One may also consider other power transformations of absolute residuals.

If X 9 0 is the power of absolute residuals on which the regression is based.

then define 77 by exp(N71) = aA E(IeI X) and T(x) = x . Then Mi = exp(X)

g X(zi'/Pe)' Vi = K2 . Straightforward calculations show that if the errors are

symmetric and either g does not depend on P3 or a -+ 0. then 6 is asymptotically

normally distributed with mean 6 and asymptotic covariance matrix

(5.6) var( el") { E (leIX)2 ? 2 N E(. )-l.

.
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with influence function linear in jejI'. For square root transformations, for

example, X = 1/2. and from (5.1) and (5.6). the asymptotic relative efficiency

of the square root transformation relative to pseudo-likelihood under normal

errors is 0.693; from (5.5). the efficiency relative to weighted absolute

residuals is 0.791.

At this point it is worthwhile to mention that under the simplifying

assumptions of our discussion, the precision of general regression estimators

does not depend on a. since a general expression such as (5.6) is independent

of 71. Thus, how well we estimate 6 in many practical cases will be %

.4.IN

approximately independent of a. Furthermore, when the power of the mean model

for variance (1.2) holds. v6 i1.)=log Wi,. so that f(13.0) is the limitingIl

variance of the (log p'i). From the general expression (5.6). the precision 1

with which one can estimate 6 depends only on the relative spread of the mean

responses, not their actual sizes, and clearly this spread must be fairly

substantial so that the spread of the logarithms of the means will be so as

well. The implications are that for (1.2). the design will play an important

role in efficiency of estimation of 6. and in some practical situations we may

not be able to estimate 6 well no matter which estimator we employ.

5.5 Comparison of methods based on residuals

We assume that the errors are symmnetric and independent and Identically

distributed and that either g does not depend on P3 or a is small. By (5.1). J

(5.4) and (5.5). the asymptotic relative efficiency of the three methods

depends only on the distribution of the errors. For normal errors, using

absolute residuals results In a 12% loss In efficiency while for standard

double exponential errors there is a 25% gain in efficiency for using absolute

residuals. For normal errors, the logarithm method represents a 59% loss of

-e -e P. 'j. J

% % %



28

efficiency with respect to pseudo-likelihood.

In Table 2 we present asymptotic relative efficiencies for various

contaminated normal distributions. The asymptotic relative efficiency of the

weighted absolute residual method to pseudo-likelihood is the same as the

asymptotic relative efficiency of the mean absolute deviation with respect to

the sample variance for a single sample, see Huber (1981, page 3); the first

column of the table is thus identical to that of Huber. The table shows that

while at normality neither the absolute residuals nor the logarithm methods are

efficient, a very slight fraction of "bad" observations is enough to offset the

superiority of squared residuals in a dramatic fashion. For example, Just two

bad observations in 1000 negate the superiority of squared residuals. If 1% or

5X of the data are "bad." absolute residuals and the logarithm method,

respectively, show substantial gains over squared residuals. The implication

is that while it is commonly perceived that methods based on squared residuals

are to be preferred in general, these methods can be highly non-robust. Our

formulation includes this result for maximum likelihood, showing its inadequacy

under slight departures from the assumed distributional structure. We also

include asymptotic relative efficiencies for appropriately weighted residual

methods based on square, cube and 2/3 roots to pseudo-likelihood using (5.6)

and observe that these methods also exhibit comparative robustness to

contamination.

5.6 Methods based on sample standard deviations

Assume that m 2 replicate observations are available at each design

point. In practice, m is usually small , see Raab (1981). We compare using

absolute residuals to using sample standard deviations in the estimators of

Section 3.1. We assume that one is fairly confident in the postulated form of

, .
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the model, thus viewing methods based on sample standard deviations as not

taking full advantage of the information available. For simplicity, assume

that the errors are independent and identically and symmetrically distributed

and that either g does not depend on P or a is small. If the errors are not

symmetric and a is not small or the variance depends on P. using sample

standard deviations presumably will be more efficient than in the discussion

below. This issue deserves further attention.

Let s2 be the sample variance of m errors (e. 6}. It is easily shown

by calculations analagous to those of section 5.1 that replacing absolute

residuals by sample standard deviations has the effect of changing the

asymptotic covariance matrices (5.1), (5.4) and (5.5) to

a.P-.

Pseudo-likelihood ((2 + K) + 2/(m - 1)} (4N f(I, ;,--

2 -
(5.7) Logarithm method m var ( log (s } (4N E(0.0)}- 1

Weighted absolute residuals {m 6. / (1 - 6)} (N f(.0)} -
,

where 6M var (sm). Table 3 contains the asymptotic relative efficiencies of

using sample standard deviations to using transformations of absolute residuals

for various values of m when the errors are standard normal. The values in the

table for T(x) = x2 and x indicate that if the data are approximately normally '-.

distributed, using sample standard deviations can entail a loss in efficiency

with respect to using residuals if m is small. For substantial replication (m

10), using sample standard deviations produces a slight edge in efficiency

with respect to weighted absolute residuals for T(x) = x.

The second column of Table 3 shows that for the logarithm method, using

sample standard deviations surpasses using residuals in terms of efficiency

except when m = 2 and is more than twice as efficient for large m. In its raw

form, log 1rt1 is very unstable because, at least occasionally, Iril Z 0.

N..
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producing a wild "outlier" in the regression. The effect of using sample

standard deviations is to decrease the possibility of such inliers; the sample

standard deviations will be likely more uniform, especially as m increases.

The implication is that the logarithm method should not be based on residuals

unless remedial measures are taken. The suggestion to trim a few of the

smallest absolute residuals before using this method is clearly supported by

the theory; presumably, such trimming would reduce or negate the theoretical

superiority of using sample standard deviations.

Table 4 contains the asymptotic relative efficiencies of weighted squared

sample standard deviations and logarithms of these to weighted squared

residuals under normality of the errors. The first column is the efficiency of

Raab's method to pseudo-likelihood, and the second column is the efficiency of

the Rodbard and Frazier method to pseudo-likelihood. The results of the table

imply that using the Raab and Rodbard and Frazier methods, which are popular in

the analysis of radioimmunoassay data, can entail a loss of efficiency when

compared to methods based on weighted squared residuals. Davidian (1986) has

shown that the Rodbard and Frazier estimator can have a slight edge in

efficiency over the weighted squared residuals methods for some highly

contaminated normal distributions. From (5.7), the squared residual methods

will be more efficient than Raab's method in the limit. Also note that the

entries for T(x) = x and log x in Table 3 for m = w are the reciprocals of the

first row of Table 2 and that the entries for last row of Table 4 are 1.0;

thus if both N and m grow large all the methods yield the same results.

Table 4 also addresses the open question as to whether Raab's method is

asymptotically more efficient than the Rodbard and Frazier method for normally

distributed data. The answer is a general yes, thus agreeing with the

Monte-Carlo evidence available when the variance is a power of the mean. The .0

results of this section suggest that in the case of assay data containing pairs

%..
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for which only Yij is observed, an estimator for 0 combining estimation based

on residuals for the observations for which xi is known and on standard

deviations otherwise in an appropriately weighted fashion would offer some

improvement over the methods currently employed; see Carroll, Davidian and

Smith (1986).

6. DISCUSSION

In Section 4 we constructed a general theory of regression-type estimation

for 9 in the heteroscedastic model (1.1). This theory includes as special

cases common methods described in Section 3 and allows for the regression to be

based on absolute residuals from the current regression fit as well as sample

standard deviations in the event of replication at each design point. Under

various restrictions such as symmetry or small a, when the variance function g

does not depend on 13, we showed in Sections 4 and 5 that we can draw general

conclusions about this class of estimators as well as make comparisons among

the various methods.

When employing methods based on residuals, one should weight the residuals

appropriately and iterate the process. There can be large relative differences

among the methods in terms of efficiency. Under symmetry of the errors,

squared residuals are preferable for approximately normally distributed data,

but this preference is tenuous, these can be highly non-robust under only

slight departures from normality; methods based on logarithms or the absolute

residuals themselves exhibit relatively more robust behavior. For the small

amount of replication found in practice, using sample standard deviations

rather than residuals can entail a loss in efficiency if estimation is based on

the squares of these quantities or the quantities themselves. For the

% ,,-i,, % . . -_ , . .-. . . . . . . . . . e. . . . . _ . . . .. . _. , .



32

logarithm method based on residuals, trimming the smallest few absolute

residuals is essential, since for normal data using sample standard deviations

is almost always more efficient than using residuals, even for a small number

of replicates. Popular methods applications such as radioimmunoassay based on

sample means and sample standard deviations can be less efficient than methods

based on weighted squared residuals. In some instances, the precision with

which we can estimate e depends on the relative range of values of the mean

responses, not thein actual values, so that immediate implications for design

are suggested.

Efficient variance function estimation in heteroscedastic regression

analysis is an important problem in its own right. There are important

differences in estimators for variance when it is modeled parametrically.
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(A. 3) N =/2 1 (H1/V1 )[Tfd(3m)} ) 1 3}

= N 1/ 1 N= H/ 1  i1) + o (1)

= B3  1/2(3 - 9) + o(1).

Applying this result to (A.2) along with a Taylor series in N gives

i=1 C I (B 2,N B 3 N)12

-B IN 2 ~ +o0(l).

which is (4.2).D

Theorem 4.2 follows by a similar argument; In this case the representation

(A.3) is unnecessary.

Sketch of Dproof of Theorem 4.3: We consider Theorem 4.2; the proof for Theorem

4.1 is similar. Recall here that (3.4) holds. In the following, all

derivatives are with respect to the mean p and the definitions of C i and M.

are as in (4.4).

Assumption (iv) implies that N 1 2 l~ .1 --- + 0 so that a Taylor

series in n1, 0 and Ygives

(A.4) B ,N Nl[= N 1=19  C 0I -N112 =(M1 H I/V')( 1  - 1's

.~~h W, .'P , .'*~* ' ~ ~ ~.
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+ N-1/2P__ (i/V) - (Vi/i)(Ti . - i)) + Op(l).

Since Yi -li = a g(Pi, zi.) i,-- XN 1- 2 g(izi,O) e,., where ei- is the mean

of the errors at xi , we can write the last two terms on the right-hand side of

(A.4) as

(A.5) XN-TN (qi + q C

for constants (q ij. By assumption (v), since e-i has mean zero. (A.5)

converges in probability to zero if E(ei ci) = 0, which holds under the

assumption of symmetry. Thus. (A.5) converges to zero which from (A.4)

completes the proof. Note that if we drop the assumption of symmetry, from

1/2.(A.5) the asymptotic normal distribution of N1(9 - 0) will have mean

p-lir { X B - "1, I- ( Ei*Ciqi, 2 )} "  0 -

APPENDIX B. CHARACERIZATION OF RESTRICTED MAXIIUM LIKEL.IOOiD

Let 3 be a generalized least squares estimator for 13. Assume first that

g does not depend on 13. Let the prior distribution for the parameters i( 3.,.a) .

be proportional to a- . The marginal posterior for 0 is hard to compute in

closed form for nonlinear regression. Following Box and Hill (1974) and Beal

and Sheiner (1986). we have the linear approximation

f(xi.1) f(xi. 13) + f Pi00)I"

Replacing f(x,3) by its linear expansion. the marginal posterior for 6 is

proportional to

.
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(B.1) p(9) = 4(N-p) . where

- -- N-p)- 2_lr / g2 (zi.,),

SC(e) = N-lf= 1 f0(xip* )fP(x 'PM) / g (zi'W').

and where Det A = determinant of A. If the variances depend on 1, we extend

the Bayesian arguments by replacing g(0) by g(z,.13 .).

Let H be the hat matrix H evaluated at P* and let hii = hii(13*.0). From

(3.1). pseudo-likelihood solves in (9,a)

[ri/{a g (zi',1',O)) 1 -l
(B.2 IN= 2 2 2 1 .vzi1.)

Vezi.1w. ) 1z i .

Since H is idempotent. the left hand side of (B.2) has approximate expectation

[1 -p/N
(B.3) 1N Ivo~i, o)(1- h,,)

To modify pseudo-likelihood to account for loss of degrees of freedom, equate

the left hand side of (B.2) to (B.3). From matrix computations as in Nel

(1980), this can be shown to be equivalent to restricted maximum likelihood.

.'5
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Table I

Description of Some Methods for Variance Function Estimation

Maximum Likelihood Normal theory maximum likelihood in (3, a. 6.

Pseudo-likelinood Normal theory maximum likelihood when (3 is set
to current value. When iterated, equivalent
to maximum likelihood if the variance does not
depend on 3.

Weighted Sauared Regress squared residuals on the variance.
Residuals function, weight inversely with squared current

variance estimate.

Weighted Absolute Regress absolute residuals on the standard
Residuals deviation function, weight inversely with current

variance estimate.

Lozarithm Method Regress logarithm of absolute residuals on log of
standard deviation function. Be wary of near
zero residuals. ,-

Restricted Maximum Pseudo-likelihood corrected for leverage.
Likelihood Maximizes marginal posterior for noninformative

prior.

All of the preceding except Restricted Maximum Likelihood have analogues
formed by replacing absolute residuals by sample standard deviations in the
case of replication. The following are based on the mean function or design
being fully or partially unknown and are often used in assays.

Rodbard and Frazier Regress log sample standard deviation on log
sample mean. where the variance function depends
on (3 only through the means.

Modified Maximum Modified functional maximum likelihood (equation
Likelihood (2.5)). where variance function depends on (3 only

through means.

Sadler and Smith Same as Modified Maximum Likelihood, but means
estimated by sample means.
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Table 2

Asymptotic relative efficiency of appropriately weighted regression methods

based on a function T of absolute residuals and the method based on

logarithms of absolute residuals with respect to appropriately weighted

regression methods based on squared residuals for underlying contaminated

normal error distributions with distribution function F(x) = (1 - a)O(x) +

at(x/3).

T(x)

contamination 2/3 1/2 1/3
fraction a x x x x1 10

0.000 0.876 0.772 0.693 0.606 0.405

0.001 0.948 0.841 0.756 0.662 0.440

0.002 1.016 0.906 0.816 0.715 0.480

0.010 1.439 1.334 1.216 1.075 0.720

0.050 2.035 2.100 1.996 1.823 1.220
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Table 3

Asymptotic relative efficiency of regression methods based on a function T

of sample standard deviations relative to using regression methods based on

a function T of absolute residuals under normality for T(x) (weighted

methods).

li~x
2

2 0.500 0.500 0.500

3 0.667 1.000 0.696

4 0.750 1.320 0.801

9 0.889 1.932 0.986

10 0.900 1.984 1.001 ,.,

1.000 2.467 1.142
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Table 4

Asymptotic relative efficiency of regression methods based on a function T

of sample standard deviations relative to regression methods based on

weighted squared residuals under normal errors.

2

m x log x

2 0.500 0.203

3 0.667 0.405

4 0.750 0.535

5 0.800 0.620

6 0.833 0.680

7 0.857 0.723

8 0.875 0.757

9 0.889 0.783

10 0.900 0.804

O 1.000 1.000
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